首页> 外文OA文献 >Development of a Novel Radial Heat Flow Apparatus for Measuring Solid-Liquid Interfacial Energy
【2h】

Development of a Novel Radial Heat Flow Apparatus for Measuring Solid-Liquid Interfacial Energy

机译:新型径向热流测量仪测量固液界面能

摘要

The solid-liquid interfacial energy,σ\u1d446\u1d43f, plays an important role in all processes that involves nucleation and growth of solids from its liquid state. In nucleation, interfacial energy affects the temperatures at which solids nucleate from its liquids during growth, the interfacial energy affects the transformation rate. Solid-liquid interfacial energy also plays important role in determining the growth morphology which may lead to solidification occurring in the preferred crystallographic directions. The solid-liquid interfacial energy is also important in the phenomena such as coarsening of dendrites, sintering and wetting. It is thus very important to have quantitative values of the interfacial energy, as this will assist in gaining fundamental knowledge into the structural nature and physics of interfaces.\udTo measure the σ\u1d446\u1d43f, the grain boundary groove method is used. The grain boundary grooves are obtained in a stable temperature gradient and by using direct application of the Gibbs-Thomson equation on the groove shape, the σ\u1d446\u1d43f can be obtained. The main aim of this study is to design and construct aradial heat flow apparatus and then to commission and test using a commercial Al alloy. The Radial heat flow apparatus provides ideal set up to obtain grain boundary groove shape, as the central heating element in the centre of the sample and the water cooling jacket around the sample provides the radial temperature gradient to produce solid-liquid interface.\udThe equilibrated grain boundary groove shapes for an industrial alloy LM25 were obtained in experiment at above eutectic temperature for 10 days with the temperature control to within ±0.05K. From the observed grain boundary groove shapes, the σ\u1d446\u1d43f for LM25 has been determined to be 167.361± 8.312 mJ/m2.
机译:固液界面能σ\ u1d446 \ u1d43f在所有涉及液态成核和固体生长的过程中都起着重要作用。在成核过程中,界面能影响固体在生长过程中从液体中成核的温度,界面能影响转化率。固液界面能在确定生长形态方面也起着重要作用,这可能导致在优选的晶体学方向上发生凝固。固液界面能在诸如树枝状晶体的粗化,烧结和润湿等现象中也很重要。因此,具有界面能的定量值非常重要,因为这将有助于获得有关界面的结构性质和物理原理的基础知识。\ ud要测量σ\ u1d446 \ u1d43f,可使用晶界槽法。在稳定的温度梯度下获得晶界凹槽,并通过在凹槽形状上直接应用Gibbs-Thomson方程,可以获得σ\ u1d446 \ u1d43f。这项研究的主要目的是设计和构造径向热流装置,然后使用商用铝合金进行调试和测试。径向热流仪为获得晶界槽形状提供了理想的设置,因为样品中心的中央加热元件和样品周围的水冷套提供了径向温度梯度以产生固液界面。在高于共晶温度10天的实验中获得了工业合金LM25的晶界沟槽形状,并将温度控制在±0.05K以内。根据观察到的晶界槽形状,已确定LM25的σ\ u1d446 \ u1d43f为167.361±8.312 mJ / m2。

著录项

  • 作者

    Son, SungWoo;

  • 作者单位
  • 年度 2017
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号